Как данные могут скорректировать работу магазина

Автор книги «Big Data. Вся технология в одной книге» Андреас Вайгенд (из-во «Бомбора») создавал революционную систему персонализации данных Amazon, сотрудничал с Alibaba, AT&T, Walmart и United Healthcare. Но книга написана не только с точки зрения бизнеса — она о том, что значит информация (которую мы, как пользователи, неизбежно оставляем в мире) для общества в целом и как мы можем обеспечить себе право голоса в вопросе использования данных.

Публикуем отрывок о том, как использование социальных данных может оптимизировать рабочее время и условия труда в розничном магазине, где приток посетителей отличается в разное время суток, погоду и т.д. с выгодой для бизнеса и работников.


Основатель аналитической компании Percolata Грег Танака разработал вместе со своими коллегами систему, прогнозирующую посещаемость магазина и определяющую численность персонала, необходимого для обслуживания покупателей. Главное — оптимизация количества работников.

«Каждый третий посетитель уходит из магазина без покупок, потому что не смог найти продавца, готового помочь», — объяснял Грег. Но постоянный «запас» персонала экономически неоправдан, особенно с учетом низкой маржинальности розничной торговли. Нельзя игнорировать и специфические особенности межличностного взаимодействия.


Коллектив может представлять собой нечто большее (или меньшее), чем просто набор должностей в смене, и это влияет как на производительность труда и моральное состояние работников, так и на общую атмосферу в магазине.


Хотя опыт и интуиция обычно подсказывают толковому менеджеру дни и часы пиковых продаж, такие субъективные предсказания не идут ни в какое сравнение с моделями Percolata, которые работают на основе данных, полученных с видеокамер и микрофонов, установленных в магазинах.

Видео- и аудиозаписи фиксируют не только количество посетителей, но и степень их заинтересованности товарами. Замер уровня шума в разных частях торгового зала помогает определить, какие отделы или товарные группы больше привлекают людей. Компания фиксирует также след мобильных телефонов — офлайновый эквивалент cookie-файлов в интернете. Эта информация помогает торговому предприятию оценить частоту посещений различных отделов магазина. Более того, формирование смен на основе прогнозов производительности труда их членов, подготовленных Percolata, позволяет увеличить выручку магазинов на 10 процентов без повышения затрат на персонал.

При решении задачи подбора работников в смену сотрудников Percolata ожидал сюрприз. Грег предложил работникам расширить свои личные календари, чтобы упростить контакты на случай срочной потребности в усилении смены дополнительным персоналом. Работники получили возможность размывать все детали и оставлять видимой только информацию о том, свободны они или заняты. Однако согласились на это лишь немногие. Почему? Они не хотели делиться информацией со своим начальством? Грег пообщался с работниками, и выяснилось, что причина гораздо проще: многие из них просто не пользовались онлайн-календарями, а если и пользовались, то крайне нерегулярно. Для начала их нужно было заинтересовать в создании информации о своем графике труда и отдыха.

Именно здесь право на изменение и дополнение данных было бы очень кстати. Готовность работника к выходу в смену обычно не бывает однозначной. Он может быть заинтересован работать в часы самой оживленной торговли, особенно если за продажи платят комиссию. Отметив в календаре периоды, когда он точно свободен, он будет в автоматическом режиме получать приглашение выйти на усиление смены. Какие-то периоды он мог бы отметить как потенциально свободные, дополнив их примечанием, что готов выходить в смену на условиях более высокойпочасовой ставки или разового бонуса. Если компания не готова платить дополнительное вознаграждение, он мог бы распределить свое время на ближайшую неделю с указанием предпочтительных рабочих часов. В свою очередь менеджеры могли бы поощрять высокорезультативных работников, предоставляя им больше возможностей для выбора рабочих смен. Во всех случаях у работников появляется больше возможностей для выбора условий труда, а менеджеры получают более эффективных работников. Это еще один пример того, как расширение индивидуального права выбора помогает совершенствовать экосистему в целом.

Другие хорошие статьи